FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLLP

1300 1 Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

Attorney Docket No.: MP0393

UNITED STATES PATENT APPLICATION
FOR

MEMORY MAPPED REGISTER FILE AND METHOD FOR
ACCESSING THE SAME

BY
Hong-Yi CHEN
AND

Henry Hin Kwong FAN

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLLP

1300 [Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

MEMORY MAPPED REGISTER FILE AND METHOD FOR
ACCESSING THE SAME

FIELD

[001] This invention relates generally to data processing systems and, more

particularly, to a memory mapped register file and method for accessing the same.

BACKGROUND

[002] General purpose registers or a “register file” are a useful component of a
data processing system’s processing architecture. For instance, a microprocessor or central
processing unit (CPU) of a data processing system retrieves operands from one or more
general purpose registers to execute instructions. The results of the executed instructions are
then stored back in one of the general purpose registers. This allows the data processing
system to execute instructions more efficiently. Many prior microprocessor architectures
operate in different processor modes, and generally use general purpose registers designated,
e.g., RO through R15.

[003] Typically, prior microprocessor architectures, which use such general
purpose registers, process instructions in a normal user mode and an exception handling
mode, such as an interrupt mode. For example, in the interrupt mode, a user application is
halted in response to an interrupt to a processor. Furthermore, in the interrupt mode, access
to some general purpose registers is performed through a separate memory unit referred to as
“banked registers” in order to improve exception handling processing. That is, in the
interrupt mode, different registers in a separate memory unit, i.e., banked registers, are
accessed than in the normal mode.

[004] FIG. 1 illustrates “banked registers” for a prior art microprocessor

architecture. As shown, in normal mode, a microprocessor (not shown) accesses registers Ro

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

through R;s in normal mode general purpose registers 100, whereas, in interrupt mode, the
microprocessor accesses only registers Rg through R;s in interrupt mode banked registers
102. In this manner, accessing registers in normal mode and interrupt mode requires access
to separate memory units. A disadvantage, however, of using banked registers is that it
requires a special type of naming scheme to distinguish between the general purpose registers
and banked registers, which increases processing overhead. Furthermore, such a general
purpose register or “register file” scheme inefficiently accesses registers by requiring access
to separate memory units for different processor modes.

[005] Another disadvantage of using the prior art architecture of banked registers
is that it does not provide flexibility and efficiency in accessing registers. In particular, the
prior art architecture does not allow for aliasing, which is the ability to arbitrarily use the
same register across different processor modes. Additionally, the prior art architecture does
not allow for fragmentation in which registers can be located in discontinuous locations in
memory for access in different processor modes.

[006] There exists, therefore, a need for improved general purpose registers or
register files without using separate memory units for register access in different processor
modes.

SUMMARY

[007] According to one aspect of the invention, a register file for a data processing
system comprises a2 memory unit, input ports, and output ports. The memory unit includes a
plurality of memory locations. Each memory location is addressable by an encoded address,
wherein the encoded address corresponds to at least one register and processor mode. The

input ports receive inputs for addressing at least one of the memory locations using an

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLLP

1300 [Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

encoded address. The output ports output data from at least one of the memory locations
addressable by an encoded address.

[008] According to another aspect of the invention, a register file for a data
processing system comprises memory means, input means, and output means. The memory
means includes a plurality of memory locations. Each memory location is addressable by an
encoded address, wherein the encoded address corresponds to at least one register means and
processor mode. The input means receive inputs for addressing at least one of the memory
locations using an encoded address. The output means output data from at least one of the
memory locations addressable by an encoded address.

[009] According to another aspect of the invention, a data processing system
comprises a processor to process instructions and a plurality of pipeline stages to execute
instructions. The pipeline stages include a register file. The register file includes a memory
unit, input ports, and output ports. The memory unit includes a plurality of memory
locations. Each memory location is addressable by an encoded address, wherein the encoded
address corresponds to at least one register and processing mode. The input ports receive
inputs for addressing at least one of the memory locations using an encoded address. The
output ports output data from at least one of the memory locations using an encoded address.

[010] According to another aspect of the invention, a data processing system
comprises processing means for processing instructions that includes pipeline means for
executing instructions. The pipeline means includes register file means. The register file
means includes a memory means, input means, and output means. The memory means
includes a plurality of memory locations. Each memory location is addressable by an

encoded address, wherein the encoded address corresponds to at least one register means and

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLL?

1300 1 Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

processing mode. The input means receive inputs for addressing at least one of the memory
locations using an encoded address. The output means output data from at least one of the
memory locations using an encoded address.

[011] According to another aspect of the invention, a processor comprises an
integrated circuit that includes a memory unit and at least one address encoder. The memory
unit includes a plurality of memory locations. Each memory location is addressable by an
encoded address, wherein the encoded address corresponds to at least one register and
processor mode. Each address encoder provides at Jeast one encoded address for addressing
at least one of the memory locations.

[012] According to another aspect of the invention, a data processing system
comprises a memory mapped register file for accessing a plurality of memory locations.
Each memory location is addressable by an encoded address, wherein the encoded address
corresponds to at least one register and processor mode.

[013] According to another aspect of the invention, @ processor comprises circuit
means the includes memory means and addressing means. The memory means includes a
plurality of memory locations. Each memory location is addressable by an encoded address,
wherein the encoded address corresponds to at least one register means and processor
mode. Each addressing means provides at least one encoded address for addressing at least
one of the memory locations.

[014] According to another aspect of the invention, an integrated circuit method
comprises configuring the integrated circuit to receive inputs; configuring the integrated
circuit to determine an encoded address based on the received inputs, wherein the encoded

address corresponds to at least one register and processor mode; configuring the integrated

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLLP

1300 [Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

circuit to access a register using an encoded address; and configuring the integrated circuit to
output data from the accessed register.

[015] According to another aspect of the invention, a method for accessing a
memory unit having a plurality of memory locations, the method comprises receiving a
memory request for accessing the memory unit, the memory request including a register
index input and a processor mode input; encoding the register index input and processor
mode input to obtain an encoded address; accessing at least one of the memory locations of
the memory unit in accordance with the encoded address, wherein the encoded address
corresponds to at least one register and processor mode; and writing data into or reading data
from the accessed memory location.

[016] According to another aspect of the invention, a memory unit comprises a
plurality of memory locations addressable by encoded addresses, wherein each encoded

address corresponds to at least one register and processor mode.

DESCRIPTION OF THE DRAWINGS

[017] The accompanying drawings, which are incorporated in and constitute a part
of the specification, illustrate exemplary implementations and embodiments of the invention
and, together with the detailed description, serve to explain the principles of the invention. In
the drawings,

[018] FIG. 1 illustrates banked registers for a prior art microprocessor
architecture;

[019] FIG. 2 illustrates one example of a data processing system having a pipeline

microprocessor architecture with a register file;

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLL?

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

[020] FIG. 3 illustrates in block diagram form one example of inputs and outputs
for the register file of FIG. 2;

[021] FIG. 4 illustrates a detailed circuit diagram of one example of the register
file of FIG. 3;

[022] FIG. 5 illustrates a block diagram of one example of an address encoder
with mapping control logic and a mapping table for obtaining an encoded address to access a
register or storage location in the register file of FIG. 4;

[023] FIG. 6 illustrates a block diagram of one example of indices corresponding
to general purpose registers;

[024] FIG. 7 illustrates a block diagram of one example of a mapping table for the
address encoder of FIG. 5;

[025] FIG. 8 illustrates a block diagram of one examples of sixteen indices
corresponding to sixteen general purpose registers;

[026] FIG. 9 illustrates a diagram of one example of a mapping table for the
indices of FIG. 8;

[027] FIG. 10A illustrates a diagram of one example of aliasing registers in the
register file of FIG. 4;

[028] FIG. 10B illustrates a diagram of one example of aliasing and fragmenting
the registers in the register file of FIG. 4;

[029] FIG. 10C illustrates a diagram of another example of fragmenting the
registers in the register file of FIG. 4;

[030] FIG. 11 illustrates one example of a flow diagram for a method to output

source data from the register file of FIG. 4; and

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

[031] FIG. 12 illustrates one example of a flow diagram for a method to write data
into the register file of FIG. 4.

DETAILED DESCRIPTION

[032] Reference will now be made in detail to exemplary implementations and
embodiments of the invention, examples of which are illustrated in the accompanying
drawings. Wherever possible, the same reference numbers will be used throughout the
drawings to refer to the same or like parts.

[033] A memory mapped register file is disclosed that overcomes disadvantages of
prior register files and provides a more flexible and efficient manner of accessing registers in
a register file of a data processing system that can operate in multiple processor modes.
According to one example, a register file for a data processing system includes a memory
unit, input ports, and output ports. The memory unit includes a plurality of memory
locations. Each memory location is addressable by an encoded address, wherein the encoded
address corresponds to at least one register and processor mode. The input ports receive
inputs for addressing at least one memory location using an encoded address. The output
ports output data from at least memory location addressable by an encoded address. In this
manner, a register is addressable and thus accessible by using the memory location
addressable by the corresponding encoded address.

[034] Thus, memory locations (corresponding to respective registers) can be
accessed in the memory unit of the register file for different processor modes without using
separate memory units such as “banked registers.” By avoiding banked registers use, a more
efficient manner of accessing registers in the register file can be achieved. Processing

overhead is also improved by making each register (i.e., memory location) of the memory

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

unit addressable by an encoded address without requiring a special naming scheme for
accessing registers in separate banked registers for different processor modes.

[035] Additionally, addressing techniques disclosed herein allow for flexible and
efficient use of memory in the register file for accessing memory registers across different
processor modes. In one example, the registers in the register file can be aliased to achieve
convenient addressing of registers in limited memory space. For instance, aliasing allows the
same register to be used in the memory unit of the register file across different processor
modes. Thus, aliasing allows for sharing of data in an aliased register without having to
transfer data between processor modes. In addition, aliasing allows a limited number of
registers to be used for a data processing system operating in different processor modes.

[036] In other examples, registers can be fragmented within the register file such
that registers for one particular processor mode are isolated and not used in other processor
modes. This is particularly useful when operating in a less frequent processing mode such as
emulation mode of a processor Addressing techniques disclosed herein also allow for
registers to be scalable to any bit width without requiring extensive redesign of the register
file. In particular, regardless of the bit width of the register, registers in the register file are
addressable by the same encoded addresses, thus allowing for increased flexibility of a
register file.

[037] In the following description, reference to a “memory mapped register file” is
a register file having a memory unit with a plurality of registers corresponding to memory
locations addressable by an encoded addresses, wherein each encoded address corresponds to
at least one register and processor mode. Thus, a “register” is also addressable by the

encoded address to its corresponding memory location. Such a register file can be

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLLP

1300 1 Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

implemented for various types of microprocessor architectures that require access to registers
in different processor modes.

[038] FIG. 2 illustrates one example of a data processing system 200 having a
pipeline microprocessor architecture with a register file 206. The pipeline architecture
processes instructions in multiple stages. Data processing system 200 includes a pipeline
comprising an instruction fetch stage 202, an instruction decode stage 204, a register file 206,
an execution stage 208, and a write back or retire logic stage 210. Data processing system
200 also includes a program memory 212 that stores instruction data used by execution stage
208. In this example, the pipeline stages and memory can be implemented as an integrated
circuit (IC) using any combination of circuits, components, memory devices, and bus lines.

[039] As will be described in further detail below, register file 206 is a memory
mapped register file having a memory unit with a plurality of registers corresponding to
memory locations addressable by an encoded address. Each encoded address corresponds to
at least one register and processor mode. Register file 206 also allows for aliasing and
fragmentation of registers in order to improve efficiency and flexibility for register accessing.

[040] Instruction fetch stage 202 fetches the current instruction from a memory,
€.g., an instruction buffer (not shown) or program memory 212, and forwards the instruction
to instruction decode stage 204. Stage 204 decodes the instruction and sends inputs to
register file 206 to access instruction data in appropriate registers. The accessed instruction
data 1s sent to execution stage 208 in order for execution stage 208 to process the instruction.
FIG. 3 illustrates in block diagram form one example of inputs and output for register file
206. Thus, referring also to FIG. 3, for example, instruction decode stage 204 sends

“processor mode mputs” and “source index inputs” to register file 206. Register file 206 uses

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

the inputs from instruction decode stage 204 to obtain an encoded address for accessing the
desired register within register file 206 in order to execute the instruction. Thus, data from
the register addressable by the encoded address is forwarded to execution stage 208.

[041] Moreover, the “processor mode inputs” and “write index inputs” can be sent
to register file 206 by other components or control circuitry (not shown) to write data into a
desired register within register file 206. For example, data received at “write data inputs”
can be written into register 206 at an encoded address derived from the “processor mode
inputs” and “write index inputs.” This allows write back or retire logic 210 to send data for

2

storage in register file 206 via the “write index inputs.” The manner in which these inputs
are used by register file 206 to obtain an encoded address is described in further detail below.

[042] Execution stage 208 can include any number of instruction execution units.
Examples of execution units include arithmetic logic units (ALUs), load/store units, multiply
and accumulate units (MACs), etc. Execution stage 208 also operates Witil program memory
212 to execute instructions. For example, for a load/store operation, execution stage 208 can
store data into program memory 212 after processing an instruction using a load/store
execution unit. In one example, instructions can be issued to execution stage 208 in-order
and executed out-of order. For data processing system 200, results of the instructions are
retired in-order to register file 206.

[043] Thus, in this example, execution stage 208 can forward data from executed
instructions (“results data”) to write back or retire logic 210 (“logic 210”). Logic 210 can
forward results data back to register file 206 for storage. In particular, logic 210 writes back

results of executed instructions from execution stage 208 to register file 206. Additionally,

execution stage 208 can execute instructions out-of-order by using a re-order buffer. In one

10

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNER?

1300 [Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

example, retire logic 120 includes a re-order buffer and retires instruction data in the reorder
buffer by sending the data to register file 206 for storage. The required data can then be used
by subsequent instructions. As further explained below, register file 206 includes a plurality
of write ports to receive write data (instruction data) from logic 210. Accordingly, logic 210
can retire one or more results (instruction data) for executed instructions in a same cycle such
that the results are stored in register file 206.

[044] With further reference to FIG. 3, register file 206 is scalable to receive any
number of inputs and output any number of outputs. Thus, in the example shown in FIG. 3,
register file 206 includes four sets of input ports to receive processor mode inputs, source
index inputs, write index inputs, and write data inputs. Each set of input ports receives a
plurality of inputs (input 1 through input N). Register file 206 also includes a set of output
ports to output source data outputs (output 1 through output N). In this example, register file
206 can receive inputs and provide outputs for a multiple issue data processing system.
Specifically, register file 206 is capable of outputting and storing data for multiple
instructions in a same cycle.

[045] For example, if two instructions require two ALU operations and each
operation requires two source data inputs from register file 206, register file 206 can receive
four processor mode inputs and four source index inputs in a same cycle to access and output
data from four registers as source data outputs. This capability assumes there are no data
dependencies, e.g., the second ALU operation does not require the result of the first ALU
operation as an input. In particular, if the first ALU operation is A + B and the second ALU
operation is C + D and the operand data for A through D is stored in four different registers

of register file 206, N = 4 for the number of inputs and outputs for register file 206.

11

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLLP

1300 [Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

Accordingly, register file 206 uses processor mode inputs 1 through 4 and source index
inputs 1 through 4 to obtain encoded addresses for accessing the four registers holding the
operand data A through D in register file 206 in order to output the operand data as source
outputs 1 through 4 .

[046] Similarly, if two instructions can be retired from retire logic 210, register file
206 can store data from the two retired instructions in a same cycle through write data input 1
and write data input 2. For example, register file 206 uses processor mode input 1 and write
index input 1 to obtain an encoded address for the register storage location within register file
206 for data received at write data input 1. In addition, register file 206 uses processor mode
input 2 and write index input 2 to obtain an encoded address for the register storage location
within register file 206 for data received at write data input 2. The manner of processing the
above inputs and outputs is explained in further detail below.

[047] FIG. 4 illustrates a detailed circuit diagram of one example of register file
206 of FIG. 3. In this example, register file 206 can operate in a multiple issue data
processing system, more specifically, a dual issue data processing system. As shown,
register file 206 includes a register file memory unit 400, a plurality of source address (read)
encoders 402, through 4024, and (write) address encoders 410, and 410,. As described in
further detail below, each of the encoders 402, through 4024, 410,, and 410, include mapping
control logic for obtaining an encoded address using a mapping table, based on a processor
mode and source index input, to access a register (or memory location) in register file
memory unit 400.

[048] Register file memory unit 400 (“memory unit 400”) is a single memory unit,

examples of which include a static random access memory (SRAM) or a plurality of flip-

12

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLLP

1300 [Street, N\W
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

flops. Memory unit 400 is scalable and capable of having any arbitrary size containing, e.g.,
16, 32, 48, or 64 registers, each capable of being addressed by an encoded address. Each
register in memory unit 400 represents a general purpose register for access in particular
processor mode and is addressable by an encoded address. In one example, an encoded
address maps to an index referring to a general purpose register for access in a particular
processor mode, as explained in further detail below.

[049] Additionally, each register is capable of having any arbitrary bit width size.
For example, each register can be 32-bits wide or 64-bits wide. Because memory unit 400 is
a single memory unit, the widths can be adjusted without affecting the encoded addressing
scheme for memory unit 400. This minimizes extensive redesign if using different widths for
memory unit 400. In other words, regardless of the bit width size, each register can be
addressable by the same encoded address using the same encoded addressing scheme. This
allows register file 206 to be expandable for 32-bit or 64-bit architectures with minimal
redesign in which an efficient and simple encoded addressing scheme is used.

[050] Read encoders 402, through 402, receive processor mode inputs and
srcl.index through src4.index inputs, respectively, and write encoders 410; and 410, receive
processor_mode inputs and wrl.index and wr2.index inputs. Read encoders 402, through
402, map a source general purpose register index (via the index inputs) to an encoded
address during a particular processor mode using a mapping control logic and mapping tables
described below. The encoded address is used for accessing data in a specific register in
memory unit 400 during the particular processor mode and to output the data as source data
for executing instructions. In this example, memory unit 400 can output a plurality of source

data (src1_data through src4_data) for at least two instructions.

13

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERL?

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

[051] Read encoders 402, through 4024 can either latch the encoded addresses in
associated latches 404, through 4044, respectively, or directly output encoded addresses to
associated selectors 406, through 4064, respectively, that also receive as inputs the output of
latches 404, through 404,. Latches 404, through 404, latch resultant encoded addresses for
pipeline storage of the encoded address in the case that data for an instruction can be reused
at the register or storage location of the latched encoded address. Selectors 406, through
4064 select either the encoded address directly from the associated address encoders or from
the associated latches in response to a signal (not shown) generated by the instruction decode
stage 204. In one example, if one of the selectors 406, through 406, selects an encoded
address from the associated read address encoder, the encoded address is also latched for
pipeline storage. In this manner, the encoded address, as opposed to the source index, is
latched for pipeline storage, thereby providing further processing efficiency.

[052] Likewise, write encoders 410; and 410, map a write index (via write index
inputs) to an encoded address during a particular processor mode using a mapping control
logic and mapping tables described below. The encoded address is used for accessing a
specific register in memory unit 400 during the particular processor mode to store data
associated with an executed instruction. In this example, a plurality of write data (wr0_data
and wrl_data) can be written or stored into memory unit 400. For example, if two
instructions can be retired or written back, wr0_data and wrl_data can be written or stored in
memory unit 400 in a same cycle. Memory unit 400 can be scalable to have any number of
write ports to which any number of data can be written or stored in memory unit 400 of

register file 206.

14

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNER®LLP

1300 | Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

[053] The mapping control logic and various examples of mapping tables for
obtaining encoded addresses for accessing registers in memory unit 400 of register file 206
will now be described. Such mapping logic and mapping tables for obtaining encoded
addresses are used by encoders 402, and 4024, and 410, and 410, described above.

[054] FIG. 5 illustrates a block diagram of one example of an address encoder 500
with a mapping control logic 502 and a mapping table 504 for obtaining encoded addresses
to access registers or storage locations in memory unit 400 of FIG. 4. By using mapping
control logic 502 and mapping table 504 to obtain encoded addresses for registers in memory
unit 400, a more flexible, efficient, and convenient manner of accessing registers across
different processor modes can be achieved. In the following examples, mapping control
logic 502 and mapping table 504 can be implemented as circuitry, examples of which include
programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), or other like
circuitry to obtain certain outputs based on varying inputs, as described below.

[055] Address encoder 500 can be representative of any one of encoders 402,
through 4024, and 410; and 410,. In this example, latches and selectors are not shown for
purposes of explanation. As shown in FIG. 5, mapping control logic 502 receives a
processor mode input and a general purpose register (GPR) index input that correspond to the
processor_mode inputs and (src.index and wr.index inputs), respectively, shown in FIG. 4.
The GPR index input is capable of receiving 1 to N different indices that correspond to
general purpose registers Ry through Ry.;. For example, referring to FIG. 6, a block diagram
is shown of one example of general purpose register (GPR) indices 600 (index; to indexy)

corresponding to a plurality of general purpose registers (Ro to Rn.1).

15

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNER!'L?

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

[056] Mapping control logic 502 can thus receive an index, e.g., index;, that
indicates that general purpose register Ry is to be accessed. Mapping control logic 502 can
also receive a processor mode, e.g., mode 1, that indicates register Ry for processor mode 1 is
to be accessed in a corresponding register of memory unit 400. Mapping control logic 502
uses mapping table 504 that maps GPR indices for various processor modes to encoded
addresses, which are used to access a corresponding register in memory unit 400 of register
file 206. For example, referring to FIG. 7, a block diagram of one example of mapping table
504 is shown. In mapping table 504, any arbitrary number of GPR indices (index; to
indexy) can be mapped to any arbitrary number of encoded addresses (encoded address; to
encoded addressy) for any number of processor modes (mode 1 to mode K).

[057] After receiving the processor mode input and GPR index input, mapping
control logic 502 obtains the appropriate encoded address using mapping table 504. In this
process, inputs are provided to mapping table 504, which can include programmable
hardware circuitry, to obtain a desired output (i.e., encoded address). The obtained encoded
address is outputted to memory unit 400 in register file 206 in order to access a desired
register. Depending on whether data is to be inputted or outputted, the register addressable
by the obtained encoded address is accessed and data is either stored or outputted,
accordingly. In this example, N is =, <, or > than M, wherein N and M are integers.

[058] More particularly, memory unit 400 can have less registers than the number
of indices, which allows for efficient use of memory space. For instance, each encoded
addressable memory location register in memory unit 400 is capable of mapping to multiple
GPR indices or registers for access in different processor modes. Furthermore, memory unit

400 can have the same or more registers than the number of GPR indices to provide

16

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLLP

1300 I Street, N\W
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

fragmentation of registers in memory unit 400. For instance, registers in memory unit 400
addressable by an encoded address can be discontinuous and scattered throughout memory
unit 400. Fragmentation is useful, e.g., when operating in emulation mode, such that
registers can be isolated when not operating in normal modes. These features are explained
in further detail below.

[059] FIG. 8 illustrates a block diagram of one example of sixteen GPR indices
800 corresponding to sixteen general purpose registers (Ro to R;s) for use by a data
processing system or processor. These registers are associated with register indices ranging
from 0000 to 1111 for the sixteen registers. In one example, the sixteen register indices
(0000 to 1111) map to thirty-two encoded addresses (00000 to 11111) for addressing thirty-
two registers in memory unit 400 across different modes.

[060] For example, referring to FIG. 9, a diagram is shown of one example of a
mapping table 904 for the sixteen GPR indices 800 of FIG. 8 mapping to thirty-two encoded
addresses. Mapping table 904 contains thirty-two encoded addresses that map to sixteen
GPR indices for processor modes 1 through N. In particular, each encoded address maps to
one of the indices ranging from 0000 to 1111 based on at least one processor mode.
Mapping table 904 thus allows a single memory unit, e.g., memory unit 400, to be used for
accessing registers designated for different processor modes using the encoded addresses.

[061] This map can be used by encoders to obtain encoded addresses using
register index inputs and processor mode inputs for accessing thirty-two registers in memory
unit 400 of register file 206. This example, shown in FIG. 9, is based on data processing
system 200 operating in N different processor modes. For example, mode 1 can be

designated as a user mode and mode 2 can be designated as an interrupt mode. Modes 3

17

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

through 7 can be designated for other types of modes such as various exception handling
modes.

[062] As illustrated in mapping table 904, registers Ry through R; associated with
indices ranging from 0000 to 0111 map to 5-bit encoded addresses ranging from 00000 to
00111. In this manner, accessing general purpose registers Ry through R is performed by
accessing the registers in memory unit 400 addressable by encoded addresses ranging from
00000 to 00111. Moreover, accessing register R; associated with modes 1 - N is performed
by accessing the register corresponding to the memory location in memory unit 400
addressable by encoded address 00001. For accessing general purpose registers Rg through
R, in mode 1, the registers corresponding to the memory locations addressable by the
encoded addresses ranging from 01000 to 01100 are used. For accessing general purpose
registers Rg and R;; in mode 2, the registers corresponding to the memory locations
addressable by the encoded addresses ranging from 01101 to 10001 are used. A similar
technique is used for accessing registers for modes 3 through N in memory unit 400 of
register file 206, as shown in FIG. 9.

[063] Thus, unlike prior art register files, register file 206 uses a single memory
unit to access registers across different processor modes. The registers and their
corresponding memory locations are addressable by an encoded address corresponding to
respective registers and processor modes. As a result, registers used for various processor
modes can be accessed using a single memory unit without using “banked registers.”

[064] Further examples of mapping tables are shown in FIGS. 10A-10C mapping
1 to N GPR indices to 1 to N-1 registers in 1 to M encoded address locations. In the

following examples, N =, >, or < than M, wherein N and M are integers. FIG. 10A

18

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

illustrates one example of aliasing registers in memory unit 400 of register file 206. Aliasing
allows multiple GPR indices to map to the same register in memory unit 400 of register file
206. As shown, index; corresponding to register Rg maps to encoded address location; in
memory unit 400 and index, and index; corresponding to registers R; and R, map to the same
encoded address location, in modes 2 and 3, respectively.

[065] Aliasing allows for efficient use of memory space in memory unit 400 and
provides a convenient manner of addressing registers in memory unit 400. For instance, data
stored in encoded address location, can be shared between modes 2 and 3 without a data
transfer taking place into encoded address location,. Furthermore, because indices 2 and 3
for processor modes 2 and 3, respectively, map to the same register at encoded address
location,, a single register for two different processor modes can be used instead of requiring
two separate registers. The mapping tables for aliasing described herein thus provide a
simple manner of associating encoded addresses to GPR indices across different processor
modes.

[066] FIG. 10B illustrates one example of aliasing and fragmenting registers in
memory unit 400 of register file 206. Fragmentation allows for GPR indices to map to
registers that are discontinuous in memory unit 400. As shown, index; corresponding to
register Ry maps to encoded address location; in memory unit 400 and index, and index;
corresponding to registers R, and R, for mode 2 map to the same register at encoded address
location,. In this example, the top portion of memory unit 400 is not used for mapping
encoded addresses to GPR indices. This unused portion of memory unit 400 can be used for

other purposes within the data processing system or processor.

19

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

[067] Fragmentation also allows for flexible use of memory space within memory
unit 400. In particular, during less often used modes, such as an emulation mode, it may be
desirable for the data processing system or processor to use different registers not used by
other modes. In this manner, data in the registers for the other modes are not destroyed. For
instance, as shown in FIG. 10C, mode 1 may be an emulation mode, such that index,
corresponding to register Ry maps to the register in memory unit 400 at encoded address
location;. Encoded address location, is isolated or fragmented from the next register at
encoded address location; and encoded address location;.

[068] FIG. 11 illustrates one example of a flow diagram for a method 1100 to
output source data from register file 206 of FIG. 4 using mapping table 904 as shown in
FIG. 9. Initially, processor mode and source data index inputs are received (step 1102). For
example, if an ALU instruction is to be executed in mode 2 that needs values A and B from
general purpose registers Rg and Ry, the processor mode input would be “mode 2” and the
source data index inputs (srcl.index and src2.index) would be 1000 and 1001 for registers Rg
and Ro.

[069] Next, an encoded address is obtained based on the received inputs by an
address encoder (using mapping table 904) to output the obtained encoded address to a latch
(step 1104). Using the example of memory map 904 above, a source index 1000 maps to
encoded address 01000 and source index 1001 maps to encoded address 01001. A selector
selects the encoded address stored in the latch or from the address encoder directly (step
1106). For instance, selectors 406, and 406, can select encoded addresses (01000 and 01001)
from either latches 404, and 404,, respectively, or address encoders 402, and 402, directly in

which the encoded addresses are outputted to memory unit 400. The register addressable by

20

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERL!LLP

1300 | Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

the outputted encoded address is accessed in memory unit 400 (step 1108). In particular,
registers Rg and Ro can be addressed using the encoded addresses 01000 and 01001 to access
and obtain data from registers Rg and Ry. Finally, the data A and B at the addressed register
are outputted (step 1110). That is, the data A and B stored in registers Rg and Ry at encoded
addresses 01000 and 01001 are outputted as srcl_data and src2_data from memory unit 400
to execution stage 204 to execute the ALU operation.

[070) The method shown in FIG. 11 can also be implemented for multiple
instructions in which four registers are accessed, assuming there are no data dependencies.
For example, if two ALU instructions are required needing values A through D stored in
registers Rg through R;; for mode 2, the address encoders 402; through 402, obtain the
encoded addresses 01000 through 01011 from the source indices 1000 through 1011 for
registers Rg through R;;. The data values A through D at storage locations addressable by
the encoded addresses are outputted as srcl_data through src4_data.

[071] FIG. 12 illustrates one example of a flow diagram for a method 1200 to
write data into register file 206 of FIG. 4 using mapping table 904 as shown in FIG. 9.
Initially, processor mode and write index inputs are received (step 1202). In method 1200,
wr0_data and wrl_data received at write input ports are to be written into two registers (Rg
and Ro) of register file memory unit 400 during mode 2. Thus, the processor mode input
would be “mode 2” and the wr0.index would be 1000 and the wrl.index would be 1001.

[072] Next, an encoded address is obtained based on the received inputs (step
1204). Using the example of memory map 904 above, wr0.index of 1000 maps to encoded
address 01000 and wrl.index of 1001 maps to encoded address 01001. The register

addressable by the encoded address is accessed in memory unit 400 (step 1206). In

21

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLL?

1300 [Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

particular, registers Rg and Ry can be addressed using the encoded addresses 01000 and
01001 for writing data to registers Rg and Ry. Finally, the wr0_data and wrl_data are
written into the accessed registers addressable by the encoded addresses 01000 and 01001.

[073] Thus, a register file has been described that can be a memory mapped
register file. The register file described herein can be implemented for general computing
devices, examples of which include microprocessors, processors, central processing units
(CPUs), application specific integrated circuits (ASICs), system on a chips (SOCs),
embedded processors or systems, micro-controllers, and other computing devices. Moreover,
the register file can be implemented for multi-stage and variable stage pipelining
architectures that operate in different processor modes.

[074] Furthermore, in the foregoing specification, the invention has been described
with reference to specific exemplary embodiments and implementations thereof. It will,
however, be evident that various modifications and changes may be made thereto without
departing from the broader spirit and scope of the invention as set forth in the appended
claims. The specification and drawings are, accordingly, to be regarded in an illustrative

sense rather than a restrictive sense.

22

	2003-09-17 Specification

